TargetMol

AHSP Protein, Human, Recombinant

Product Code:
 
TAR-TMPY-03603
Product Group:
 
Recombinant Proteins
Supplier:
 
TargetMol
Regulatory Status:
 
RUO
Shipping:
 
cool pack
Storage:
 
-20°C
1 / 1

Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.

No additional charges, what you see is what you pay! *

CodeSizePrice
TAR-TMPY-03603-100ug100ugEnquire
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
Prices exclude any Taxes / VAT
Stay in control of your spending. These prices have no additional charges, not even shipping!
* Rare exceptions are clearly labelled (only 0.14% of items!).
Multibuy discounts available! Contact us to find what you can save.
This product comes from: United States.
Typical lead time: 10-14 working days.
Contact us for more accurate information.
  • Further Information
  • References
  • Show All

Further Information

Bioactivity:
AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ~1 um(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22°C. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α?AHSP complex (k(AHSP) ~ .2 s(-1)) is ~1-fold slower than that for ferrous α?AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.
Molecular Weight:
11.8 kDa (predicted)
Purity:
98%

References

1.Miele G.,et al.,(2001), A novel erythroid-specific marker of transmissible spongiform encephalopathies. Nat. Med. 7:361-364. 2.Zhang Q.-H.,et al., (2000), Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells.Genome Res. 10:1546-1560. 3.Kihm A.J.,et al.,(2002), An abundant erythroid protein that stabilizes free alpha-haemoglobin.Nature 417:758-763.